Design for Verification:

Using Design Patterns to Build Reliable Systems'

Peter C. Mehlitz
CSC, NASA Ames Research Center
pcmehlitz @email.arc.nasa.gov

John Penix
NASA Ames Research Center
John.J.Penix @nasa.gov

Abstract

Components so far have been mainly used in
commercial software development to reduce time to
market. While some effort has been spent on formal
aspects of components, most of this was done in the
context of programming language or operating system
framework integration. As a consequence, increased
reliability of composed systems is mainly regarded as a
side effect of a more rigid testing of pre-fabricated
components.

In contrast to this, Design for Verification (D4V) puts
the focus on component specific property guarantees,
which are used to design systems with high reliability
requirements. D4V components are domain specific
design pattern instances with well-defined property
guarantees and usage rules, which are suitable for
automatic verification. The guaranteed properties are
explicitly used to select components according to key
system requirements.

The D4V hypothesis is that the same general
architecture and design principles leading to good
modularity, extensibility and complexity/functionality
ratio can be adapted to overcome some of the limitations
of conventional reliability assurance measures, such as
too large a state space or too many execution paths.

1. Introduction

High dependability systems can be characterized by
the need to satisfy a set of key properties at all times. This
includes standard properties like absence of deadlocks or
constant space execution, and application specific
properties such as guaranteed responses or ‘“‘correct’
results. General approaches to demonstrating compliance
with these properties are testing and formal verification.

1

NASA'’s Engineering for Complex Systems program.

Testing has inherent limitations with respect to non-
reproducible execution environment behavior (like thread
scheduling), which can be regarded as non-determinisms
that are not fully controllable in the test environment.
Thus testing covers only a small fraction of the potential
state space of concurrent applications.

If higher confidence is needed, formal verification
methods like model checking [1] or static analysis can be
used. However, due to the inherent state space explosion,
these methods tend to not scale well, which usually results
in having to manually create models of the system to
check. This process introduces potential fidelity problems.
Moreover, it can also be so expensive that verification
becomes a one time effort, which is inconsistent with the
evolutionary nature of large systems development. The
difficulty in verifying formal properties in turn often leads
to a lack of properties in the system specification, creating
additional fidelity problems by having to guess the
verification goals.

No matter if testing or verification is used, both
require a co-operative program design. For testing,
design choices mainly determine the achievable test
granularity (unit tests). Verification depends on a
suitable program design for applicability of its modeling
techniques (e.g. for abstraction). This leads to the
implication of explicitly using appropriate design
measures, instead of compensating their lack by means
of tools and modeling techniques.

A general approach to the verification of large systems
therefor is to use composition to build a system from
separately verifiable parts,. This is the approach followed
by Design for Verification (D4V), based on the
assumption that the same design principles can be used
not only to increase verifiability, but also to help testing,
and esp. to improve understanding and extensibility of the
target system.

The research described in this report was performed at NASA Ames Research Center’s Automated Software Engineering group and is funded by



2. The Design for Verifiability Approach

The D4V components are not classical modules.
Object oriented designs typically use a mix of inheritance
(for static variation) and delegation (for runtime
variation). The application mainly provides parts that are
hooked into a usually much bigger framework library. The
most abstract model for this is not the (language specific)
class model, but sets of collaborating types with dedicated
roles. This is essentially what came to be known as Design
Patterns [2].

So far, Design Patterns have mainly be used as “mental
building blocks”. They come with various degrees of
collaboration details, ranging from high level architectural
patterns (not explicitly naming interfaces or aggregates)
down to language specific idioms (coding patterns at
expression level). Since a primary quality of a design
pattern is its genericity, i.e., how readily it can be applied
to a range of similar concrete problems, patterns often
come with a deliberate lack of formalism, to leave enough
freedom for problem-specific implementations. This
otherwise helpful simplicity can make it difficult to use
automated checks for correct pattern implementation and
usage, which is on the other hand required to deduce
properties for a target system composed of certain
patterns. Bridging this gap between human-oriented
fuzziness and tool oriented formalism is the major
challenge for the D4V approach.

Ultimately, D4V strives to support the design process
at two different levels:

* domain specific pattern systems
e aspect oriented implementation

The first level provides the building blocks from which
to compose systems, the second level gives guidelines for
how to implement these components.

Our initial target domain are state machine based,
observable robotics applications with asynchronous
transition triggers (events).

2.1 Domain Specific Pattern Systems

The D4V pattern systems consist of application
domain specific libraries with static pattern components,
plus a lookup schema to identify suitable patterns.

Each pattern instance comes with a set of guaranteed
properties and a set of formal rules how to use the pattern
so that the guarantees will hold.

The guarantees form the premier selection criteria for
pattern lookup, which constitutes the main principle of
D4V - to choose components based on verifiable
properties derived from key requirements. We do not
design a system and later on try to find out what
properties we can check by means of existing verification
tools, but rather design the system based on what we want
to verify.

Examples for such properties could be a asynchronous
event multiplexer (EventQueue) component which
guarantees non-blocking, constant time multiplexing and
prioritized event retrieval.

The usage rules mainly refer to implementation
constraints of application provided types used in a pattern
instance. The nature of these rules has to be formal
enough to enable automated checks. It is essential to note
that usage rule checks can be applied in the same fashion
like regression testing. Since the property guarantees of a
given pattern are invariant, verification can be turned into
a automated development co-process.

A typical example is a Observer pattern variant which
guarantees that all observers of a Subject will be
synchronously notified whenever the Subject changes
state. A usage rule would be that Observers do not
perform any potentially unbound blocking operation from
inside of their notification action, since this would prevent
all subsequent Observers from getting notified. The check
itself could be performed with static analysis.

Beyond this focus on safe implementation of “essential
system complexity”, there is also a important side effect of
reducing harmful “accidental complexity” [3], which is a
typical outcome of adding features to systems which were
not designed for extensibility. To quantify this aspect, we
have taken a small. moderately object-oriented.
autonomous robot application and re-designed it using
standard design patterns.

Original version D4V version
classes 82 37
interfaces 1 10
NCLOC 5926 1745
max WMC 397 56
sum WMC 1426 389
threads 6 2

Both systems were written in Java. WMC stands for
“Weighted Methods per Class”, the sum of the cyclomatic
complexities of its methods.

The pattern oriented re-design not only resulted in the
anticipated extensibility and test-suitability, especially for
unit tests, but also showed a significant reduction in over-
all size, and an elimination of the complexity “hot spots”
(max WMC). Just the decrease in threads alone makes the
system more understandable, less error-prone (deadlocks),
and more verifiable (state space).



2.2 Aspect oriented Implementation

D4V focuses on three essential aspects [4] of its
pattern implementations, each one being represented by
explicitly marked and annotated code sections:

» consistent program states (CheckPoints)
« conceptual branches (BranchPoints)
» potential extensions (ExtensionPoints)

(a) CheckPoints are locations where required-to-be
consistent states which are relevant to component property
guarantees have to be checked. This includes freely
placeable assertions as well as pre-, post-conditions and
invariants. The checks themselves can refer to explicit
program state (variable values) and implicit execution
environment state (number of instructions, relative time
etc.). Checkpoints are linked to their corresponding
property guarantees. The concept is closely related to
“programming by contract”, and basically defines the
underlying correctness model of a component
implementation. While evaluation of check points is
straightforward (provided the programming environment
has a assertion mechanism, reachability analysis and side-
effect detection of check points is again subject to tool
support.

A typical example is a check for memory leaks after a
certain operation has been completed, to verify constant-
space execution properties.

(b) BranchPoints denote locations that are relevant for
both testing and model checking. Only conceptual
BranchPoints are identified, not every branch in the
control flow. We include only operations that are non-
deterministic from the applications perspective, esp.
potential context switching operations in multi-threaded
programs (e.g. Thread starts, locking attempts, blocking
I/0). Every BranchPoint has a description of it's possible
choices and their corresponding conditions. For testing,
the BranchPoints describe the required coverage, and
hence form the basis for (automated) test case generation.
For model checking, they can be considered as the “built-
in model” providing potential backtracking targets and
atomic sections.

We are investigating program designs that use explicit
ChoiceGenerator objects in BranchPoints, with the goal to
enable “in-situ” model checking by means of effectively
turning threads into co-routines (i.e. making programming
environment specific non-deterministic actions
reproducible). A welcome side effect of this approach
would be that systems can be tested and verified in their
real target environment, instead of the environment which
is required to run complex tools.

Such a BranchPoint implementation scheme also
reflects the observation that (a) concurrent systems
should be designed around their

synchronization/communication points, and (b) these
operations are usually encapsulated into APIs or specific
language constructs anyway (i.e. can be easily
intercepted).

(c) ExtensionPoints identify the locations that are
relevant for extending the applications functionality
without breaking its design. They include potential base
classes and interfaces with their corresponding variations
(e.g. overridable methods), specifying associated
implementation constraints.

The reason why we focus on this aspect in the D4V
context is the fact that the development of a complex
system is hardly ever completed [5]. The typical case is a
evolutionary extension of functionality, which can easily
lead to accidental complexity and feature bloat, violating
properties which did hold in the original design. The goal
is to enable effective assessment of the effects potential
feature extensions might have on reliability requirements.

3. Project Status and Outlook

The D4V project is still in its early stages. The current
focus is on the development of a suitable design pattern
system based on our motivating example, a event driven,
observable, state-model based control system for
autonomous robots. We plan to eventually have three
different versions of the system as a basis for metrics
comparison

+ the original version exposing typical effects of
accidental complexity

+ the standard design-pattern implementation to show
the reduction of complexity and increase of
extensibility

» a version that uses D4V specific patterns to show the
property-guarantee driven design process

This approach reflects our view that D4V is not a
radically new design methodology, but rather extends and
combines already accepted “best design practices” in
order to overcome the traditional gap between
design/development and testing/verification, which causes
not only problems for finding defects, but also for
subsequently fixing them.

References

[1] W. Visser, K. Havelund, G. Brat, S. Park. “Model
Checking Programs”, Proceedings of the 15th
International Conference on Automated Software
Engineering (ASE), Grenoble, France, September 2000.



[2] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides - “Design Patterns Elements of Reusable
Object-Oriented Software”, Addison Wesley, 1995

[3] Frederick P. Brooks - “No Silver Bullet: Essence and
Accidents of Software Engineering”, Proceedings of the
IFIP '86 conference

[4] Tzilla Elrad, Robert Filman, Atef Bader - “ Aspect
Oriented Programming”, CACM Vol 44 No. 10, October
2001

[5] David Parnas - “Designing Software for Ease of
Extension and Contraction”, IEEE Transactions on
Software Engineering, SE-5(2):128--38, Mar. 1979.



